O Polinômio Médio Não Sazonal Móvel Médio Não Invertível


Identificando o número de termos AR ou MA em um modelo ARIMA ACF e PACF: depois de uma série de tempo ter sido estacionada por diferenciação, o próximo passo na montagem de um modelo ARIMA é determinar se os termos AR ou MA são necessários para corrigir qualquer autocorrelação que Permanece na série diferenciada. Claro, com um software como o Statgraphics, você poderia tentar algumas combinações diferentes de termos e ver o que funciona melhor. Mas existe uma maneira mais sistemática de fazer isso. Ao analisar as linhas de função de autocorrelação (ACF) e autocorrelação parcial (PACF) da série diferenciada, você pode identificar tentativamente os números de termos AR e MA que são necessários. Você já conhece o gráfico ACF: é apenas um gráfico de barras dos coeficientes de correlação entre séries temporais e atrasos de si. O plano PACF é um gráfico dos coeficientes de correlação parciais entre as séries e os atrasos de si. Em geral, a correlação quotpartial entre duas variáveis ​​é a quantidade de correlação entre elas que não é explicada por suas correlações mútuas com um conjunto especificado de outras variáveis. Por exemplo, se estamos regredindo uma variável Y em outras variáveis ​​X1, X2 e X3, a correlação parcial entre Y e X3 é a quantidade de correlação entre Y e X3 que não é explicada pelas suas correlações comuns com X1 e X2. Esta correlação parcial pode ser calculada como a raiz quadrada da redução de variância que é alcançada pela adição de X3 à regressão de Y em X1 e X2. Uma correlação automática parcial é a quantidade de correlação entre uma variável e um atraso de si que não é explicado por correlações em todas as notas de ordem inferior. A autocorrelação de uma série temporal Y no intervalo 1 é o coeficiente de correlação entre Y t e Y t - 1. O que é presumivelmente também a correlação entre Y t -1 e Y t -2. Mas se Y t está correlacionado com Y t -1. E Y t -1 está igualmente correlacionado com Y t -2. Então também devemos esperar encontrar correlação entre Y t e Y t-2. Na verdade, a quantidade de correlação que devemos esperar no intervalo 2 é precisamente o quadrado da correlação lag-1. Assim, a correlação no intervalo 1 quotpropagatesquot para lag 2 e presumivelmente para atrasos de ordem superior. A autocorrelação parcial no intervalo 2 é, portanto, a diferença entre a correlação real no intervalo 2 e a correlação esperada devido à propagação da correlação no intervalo 1. Aqui está a função de autocorrelação (ACF) da série UNITS, antes de qualquer diferenciação ser realizada: As autocorrelações são significativas para um grande número de atrasos, mas talvez as autocorrelações nos intervalos 2 e acima sejam meramente decorrentes da propagação da autocorrelação no intervalo 1. Isso é confirmado pelo argumento PACF: Observe que o gráfico PACF tem uma significância Pico apenas no intervalo 1, o que significa que todas as autocorrelações de ordem superior são efetivamente explicadas pela autocorrelação lag-1. As autocorrelações parciais em todos os atrasos podem ser calculadas ajustando uma sucessão de modelos autorregressivos com um número crescente de atrasos. Em particular, a autocorrelação parcial no intervalo k é igual ao coeficiente estimado de AR (k) em um modelo auto-regressivo com termos k, isto é, Um modelo de regressão múltipla em que Y é regredido em LAG (Y, 1), LAG (Y, 2), etc. até LAG (Y, k). Assim, por mera inspeção do PACF, você pode determinar quantos termos de AR você precisa usar para explicar o padrão de autocorrelação em uma série de tempo: se a autocorrelação parcial é significativa no intervalo k e não significativa em atrasos de ordem superior - ou seja. Se o PACF quotcuts offquot at lag k - então isso sugere que você deve tentar ajustar um modelo de ordem autorregressivo k O PACF da série UNITS fornece um exemplo extremo do fenômeno de corte: ele tem um pico muito grande no intervalo 1 E nenhum outro pico significativo, indicando que, na ausência de diferenciação, um modelo AR (1) deve ser usado. No entanto, o termo AR (1) neste modelo resultará ser equivalente a uma primeira diferença, porque o coeficiente estimado de AR (1) (que é a altura do pico PACF no intervalo 1) será quase exatamente igual a 1 . Agora, a equação de previsão para um modelo AR (1) para uma série Y sem ordens de diferenciação é: Se o coeficiente AR (1) 981 1 nesta equação for igual a 1, é equivalente a prever que a primeira diferença De Y é constante - ou seja É equivalente à equação do modelo de caminhada aleatória com crescimento: o PACF da série UNITS está nos dizendo que, se não diferenciarmos, então devemos caber um modelo AR (1) que se tornará equivalente a tomar Uma primeira diferença. Em outras palavras, está nos dizendo que UNITS realmente precisa de uma ordem de diferenciação para ser estacionada. Assinaturas AR e MA: se o PACF exibir um corte acentuado enquanto o ACF decai mais devagar (ou seja, tem picos significativos em atrasos maiores), dizemos que a série estacionada exibe uma assinatura quotAR, o que significa que o padrão de autocorrelação pode ser explicado com mais facilidade Adicionando termos AR do que adicionando termos MA. Provavelmente, você achará que uma assinatura AR é comumente associada à autocorrelação positiva no intervalo 1 - ou seja. Ele tende a surgir em séries que são ligeiramente inferiores. A razão para isso é que um termo AR pode atuar como uma diferença quotparcial na equação de previsão. Por exemplo, em um modelo AR (1), o termo AR age como uma primeira diferença se o coeficiente autorregressivo for igual a 1, não faz nada se o coeficiente autorregressivo for zero e ele atuará como uma diferença parcial se o coeficiente for entre 0 e 1. Então, se a série for ligeiramente inferior à diferença - ou seja Se o padrão não estacionário de autocorrelação positiva não tiver sido completamente eliminado, ele irá trocar por uma diferença parcial ao exibir uma assinatura AR. Portanto, temos a seguinte regra de ouro para determinar quando adicionar termos AR: Regra 6: Se o PACF da série diferenciada exibir um corte nítido e ou a autocorrelação lag-1 é positiva --i. e Se a série aparecer um pouco quotunderdifferencedquot - então considere adicionar um termo AR ao modelo. O atraso em que o PACF corta é o número indicado de termos AR. Em princípio, qualquer padrão de autocorrelação pode ser removido de uma série estacionada adicionando termos autorregressivos suficientes (atrasos da série estacionada) para a equação de previsão, e o PACF informa quantos são provavelmente necessários. No entanto, esta não é sempre a maneira mais simples de explicar um determinado padrão de autocorrelação: às vezes é mais eficiente adicionar os termos MA (atrasos dos erros de previsão). A função de autocorrelação (ACF) desempenha o mesmo papel para os termos MA que o PACF reproduz para os termos AR - ou seja, o ACF lhe diz quantos termos MA são susceptíveis de serem necessários para remover a autocorrelação restante da série diferenciada. Se a autocorrelação é significativa no intervalo k mas não em atrasos maiores - isto é. Se o ACF quotcuts offquot no lag k - isso indica que exatamente os termos de k MA devem ser usados ​​na equação de previsão. No último caso, dizemos que a série estacionada exibe uma assinatura quotMA, o que significa que o padrão de autocorrelação pode ser explicado mais facilmente adicionando termos MA que adicionando termos AR. Uma assinatura MA é comumente associada à autocorrelação negativa no intervalo 1 - isto é. Tende a surgir em séries que são ligeiramente diferenciadas. A razão para isso é que um termo de MA pode quettamente cancelar uma ordem de diferenciação na equação de previsão. Para ver isso, lembre-se de que um modelo ARIMA (0,1,1) sem constante é equivalente a um modelo Simple Sponente Exponencial. A equação de previsão para este modelo é onde o coeficiente MA (1) 952 1 corresponde à quantidade 1 - 945 no modelo SES. Se 952 1 for igual a 1, isso corresponde a um modelo SES com 945 0, que é apenas um modelo CONSTANT porque a previsão nunca é atualizada. Isto significa que quando 952 1 é igual a 1, é realmente cancelar a operação de diferenciação que normalmente permite que a previsão de SES se recupere na última observação. Por outro lado, se o coeficiente de média móvel for igual a 0, este modelo reduz-se a um modelo de caminhada aleatória - isto é. Ele deixa a operação de diferenciação sozinha. Então, se 952 1 for algo maior que 0, é como se cancelássemos parcialmente uma ordem de diferenciação. Se a série já estiver ligeiramente diferenciada - ou seja. Se a autocorrelação negativa for introduzida - então as cotas para uma diferença serão parcialmente canceladas ao exibir uma assinatura MA. (Muita onda de braços está acontecendo aqui Uma explicação mais rigorosa desse efeito é encontrada na Folha de Matemática de Modelos ARIMA). Daí a seguinte regra adicional: Regra 7: Se o ACF da série diferenciada exibir uma Corte nítido e ou a autocorrelação lag-1 é negativo --e Se a série aparecer um pouco quotoverdifferencedquot - então considere adicionar um termo MA ao modelo. O atraso em que o ACF corta é o número indicado de termos MA. Um modelo para a série UNITS - ARIMA (2,1,0): Anteriormente, determinamos que a série UNITS precisava (pelo menos) de uma modalidade de diferenciação não-sazonal para ser estacionada. Depois de tomar uma diferença não-sazonal - ou seja. Ajustando um modelo ARIMA (0,1,0) com constante - as parcelas ACF e PACF se parecem com isto: Observe que (a) a correlação no intervalo 1 é significativa e positiva, e (b) o PACF mostra um quotcutoffquot mais nítido do que O ACF. Em particular, o PACF tem apenas dois picos significativos, enquanto o ACF tem quatro. Assim, de acordo com a Regra 7 acima, a série diferenciada exibe uma assinatura AR (2). Se, portanto, definir a ordem do termo AR para 2 - ou seja. Ajustar um modelo ARIMA (2,1,0) - obtemos as seguintes parcelas ACF e PACF para os resíduos: a autocorrelação nos atrasos cruciais - ou seja, defasos 1 e 2 - foi eliminada e não existe um padrão discernível Em atrasos de ordem superior. A série de séries temporais dos resíduos mostra uma tendência ligeiramente preocupante para se afastar da média: no entanto, o relatório de resumo de análise mostra que o modelo, no entanto, funciona bastante bem no período de validação, ambos os coeficientes de AR são significativamente diferentes de zero e o padrão O desvio dos resíduos foi reduzido de 1.54371 para 1.4215 (quase 10) pela adição dos termos AR. Além disso, não há nenhum sinal de quotunit rootquot porque a soma dos coeficientes AR (0.2522540.195572) não é próxima de 1. (As raízes das unidades são discutidas em detalhes mais detalhadamente abaixo). No geral, isso parece ser um bom modelo . As previsões (não transformadas) para o modelo mostram uma tendência ascendente linear projetada para o futuro: a tendência nas previsões de longo prazo deve-se ao fato de que o modelo inclui uma diferença não-sazonal e um termo constante: esse modelo é basicamente uma caminhada aleatória com Crescimento ajustado pela adição de dois termos autorregressivos - ou seja, Dois atrasos da série diferenciada. A inclinação das previsões de longo prazo (ou seja, o aumento médio de um período para outro) é igual ao termo médio no resumo do modelo (0.467566). A equação de previsão é: onde 956 é o termo constante no resumo do modelo (0.258178), 981 1 é o coeficiente AR (1) (0.25224) e 981 2 é o coeficiente AR (2) (0.195572). Média versus constante: em geral, o quotmeanquot termo na saída de um modelo ARIMA refere-se à média da série diferenciada (ou seja, a tendência média se a ordem de diferenciação for igual a 1), enquanto o quotconstantquot é o termo constante que aparece No lado direito da equação de previsão. Os termos médios e constantes são relacionados pela equação: MEIO CONSTANTE (1 menos a soma dos coeficientes AR). Neste caso, temos 0.258178 0.467566 (1 - 0.25224 - 0.195572) Modelo alternativo para a série UNITS - ARIMA (0,2,1): Lembre-se de que, quando começamos a analisar a série UNITS, não estávamos inteiramente certos do Ordem correta de diferenciação para uso. Uma ordem de diferenciação não-sazonal produziu o desvio padrão mais baixo (e um padrão de autocorrelação positiva leve), enquanto duas ordens de diferenciação não-sazonal produziram uma trama de séries temporais mais estacionárias (mas com autocorrelação negativa bastante forte). Aqui estão ambos ACF e PACF da série com duas diferenças não-sazonais: O pico negativo único no intervalo 1 na ACF é uma assinatura MA (1), de acordo com a Regra 8 acima. Assim, se usássemos 2 diferenças não sazonais, gostaríamos também de incluir um termo MA (1), produzindo um modelo ARIMA (0,2,1). De acordo com a Regra 5, também queremos suprimir o termo constante. Aqui, então, são os resultados de ajustar um modelo ARIMA (0,2,1) sem constante: Observe que o desvio padrão de ruído branco estimado (RMSE) é apenas muito ligeiramente maior para esse modelo do que o anterior (1.46301 aqui versus 1.45215 anteriormente). A equação de previsão para este modelo é: onde theta-1 é o coeficiente MA (1). Lembre-se que isso é semelhante a um modelo Linear Exponential Suavização, com o coeficiente MA (1) correspondente à quantidade 2 (1-alfa) no modelo LES. O coeficiente de MA (1) de 0,76 neste modelo sugere que um modelo de LES com alfa na proximidade de 0,72 se encaixaria igualmente bem. Na verdade, quando um modelo LES é ajustado para os mesmos dados, o valor ideal de alfa é de cerca de 0,61, o que não está muito longe. Aqui está um relatório de comparação de modelos que mostra os resultados da montagem do modelo ARIMA (2,1,0) com constante, o modelo ARIMA (0,2,1) sem constante eo modelo LES: os três modelos executam quase idênticamente em O período de estimativa eo modelo ARIMA (2,1,0) com constante aparece um pouco melhor do que os outros dois no período de validação. Com base apenas nestes resultados estatísticos, seria difícil escolher entre os três modelos. No entanto, se traçamos as previsões de longo prazo feitas pelo modelo ARIMA (0,2,1) sem constante (que são essencialmente as mesmas do modelo LES), vemos uma diferença significativa daqueles do modelo anterior: As previsões têm um pouco menos de tendência ascendente do que as do modelo anterior - porque a tendência local próxima ao final da série é ligeiramente inferior à tendência média em toda a série -, mas os intervalos de confiança aumentam muito mais rapidamente. O modelo com duas ordens de diferenciação pressupõe que a tendência da série é variável no tempo, portanto, considera que o futuro distante é muito mais incerto do que o modelo com apenas uma ordem de diferenciação. Qual modelo devemos escolher. Isso depende dos pressupostos que fazemos com relação à constância da tendência nos dados. O modelo com apenas uma ordem de diferenciação assume uma tendência média constante - é essencialmente um modelo de caminhada aleatória ajustado com crescimento - e, portanto, faz projeções de tendência relativamente conservadoras. Também é bastante otimista sobre a precisão com que pode prever mais de um período à frente. O modelo com duas ordens de diferenciação assume uma tendência local variável no tempo - é essencialmente um modelo de alisamento exponencial linear - e suas projeções de tendência são um pouco mais difíceis. Como regra geral neste tipo de situação, eu recomendaria escolher o modelo com a menor ordem de diferenciação, outras coisas sendo aproximadamente iguais. Na prática, os modelos de alinhamento aleatório ou simples-exponencial-suavização parecem funcionar melhor do que os modelos de alisamento exponencial linear. Modelos mistos: na maioria dos casos, o melhor modelo resulta em um modelo que usa apenas os termos AR ou apenas os termos MA, embora em alguns casos, um modelo quotmixedquot com ambos os termos AR e MA possa proporcionar o melhor ajuste para os dados. No entanto, deve-se ter cuidado ao montar modelos mistos. É possível que um termo AR e um termo MA cancelem os efeitos uns dos outros. Mesmo que ambos possam parecer significativos no modelo (conforme julgado pelas estatísticas t de seus coeficientes). Assim, por exemplo, suponha que o modelo quotcorrectquot para uma série temporal seja um modelo ARIMA (0,1,1), mas, em vez disso, você se encaixa em um modelo ARIMA (1,1,2) - ou seja. Você inclui um termo de AR adicional e um termo de MA adicional. Em seguida, os termos adicionais podem acabar aparecendo significativo no modelo, mas, no interior, eles podem estar apenas trabalhando uns contra os outros. As estimativas de parâmetros resultantes podem ser ambíguas e o processo de estimação de parâmetros pode demorar muitas (por exemplo, mais de 10) iterações para convergir. Assim: Regra 8: É possível que um termo de AR e um termo de MA cancelem os efeitos uns dos outros, então, se um modelo de AR-MA misturado parece se adequar aos dados, também tente um modelo com um termo de AR menos e um termo de MA menor - principalmente se as estimativas de parâmetros no modelo original exigirem mais de 10 iterações para convergir. Por esse motivo, os modelos ARIMA não podem ser identificados por uma abordagem passo a passo quotback que inclui ambos os termos AR e MA. Em outras palavras, você não pode começar por incluir vários termos de cada tipo e, em seguida, jogar fora aqueles cujos coeficientes estimados não são significativos. Em vez disso, você normalmente segue uma abordagem stepwisequot quotforward, adicionando termos de um tipo ou outro como indicado pela aparência das parcelas ACF e PACF. Raizes da unidade: se uma série estiver grosseiramente subjugada ou superdiferenciada - ou seja. Se uma série completa de diferenciação precisa ser adicionada ou cancelada, isso geralmente é sinalizado por uma quotunit rootquot nos coeficientes estimados de AR ou MA do modelo. Um modelo de AR (1) é dito ter uma raiz unitária se o coeficiente estimado de AR (1) for quase exatamente igual a 1. (Por citar exatamente quot, eu realmente não significa significativamente diferente de. Em termos do erro padrão próprio dos coeficientes. ) Quando isso acontece, significa que o termo AR (1) imita com precisão uma primeira diferença, caso em que você deve remover o termo AR (1) e, em vez disso, adicionar uma ordem de diferenciação. (Isso é exatamente o que aconteceria se você montasse um modelo AR (1) na série UNITS indiferenciada, como observado anteriormente.) Em um modelo AR de ordem superior, existe uma raiz unitária na parte AR do modelo se a soma de Os coeficientes AR são exatamente iguais a 1. Neste caso, você deve reduzir o orden do termo AR por 1 e adicionar uma ordem de diferenciação. Uma série de tempo com uma unidade de raiz nos coeficientes de AR é não estacionária - isto é. Ele precisa de uma maior ordem de diferenciação. Regra 9: Se houver uma unidade de raiz na parte AR do modelo - ou seja. Se a soma dos coeficientes AR for quase exatamente 1 - você deve reduzir o número de termos AR por um e aumentar a ordem de diferenciação por um. Da mesma forma, um modelo de MA (1) é dito ter uma raiz de unidade se o coeficiente estimado de MA (1) for exatamente igual a 1. Quando isso acontece, significa que o termo MA (1) está exatamente cancelando uma primeira diferença, em Em qual caso, você deve remover o termo MA (1) e também reduzir a ordem de diferenciação por um. Em um modelo de MA de ordem superior, existe uma raiz de unidade se a soma dos coeficientes MA for exatamente igual a 1. Regra 10: Se houver uma unidade de raiz na parte MA do modelo - isto é. Se a soma dos coeficientes MA for quase exatamente 1 - você deve reduzir o número de termos MA por um e reduzir a ordem de diferenciação por um. Por exemplo, se você encaixa um modelo de alisamento exponencial linear (um modelo ARIMA (0,2,2)) quando um modelo de suavização exponencial simples (um modelo ARIMA (0,1,1) teria sido suficiente, você pode achar que A soma dos dois coeficientes MA é quase igual a 1. Ao reduzir a ordem MA e a ordem de diferenciação por cada uma, você obtém o modelo SES mais apropriado. Um modelo de previsão com uma unidade de raiz nos coeficientes MA estimados é dito não invariável. O que significa que os resíduos do modelo não podem ser considerados como estimativas do ruído aleatório quottruequot que gerou as séries temporais. Outro sintoma de uma raiz unitária é que as previsões do modelo podem significar upquot ou comportar-se estranhamente. Se a trama de séries temporais das previsões de longo prazo do modelo parece estranha, você deve verificar os coeficientes estimados do seu modelo para a presença de uma unidade de raiz. Regra 11: Se as previsões a longo prazo parecerem erráticas ou instáveis, pode haver uma unidade de raiz nos coeficientes AR ou MA. Nenhum desses problemas surgiu com os dois modelos instalados aqui, porque nós tínhamos o cuidado de começar com ordens plausíveis de diferenciação e números apropriados de coeficientes AR e MA ao estudar os modelos ACF e PACF. Discussões mais detalhadas de raízes unitárias e efeitos de cancelamento entre os termos AR e MA podem ser encontradas na documentação da Estrutura Matemática do modelo ARIMA. Identificando os números de termos AR ou MA em modelos ARF modelo ACF e PACF: após uma série temporal ter sido estacionada Ao diferenciar, o próximo passo na montagem de um modelo ARIMA é determinar se os termos AR ou MA são necessários para corrigir qualquer autocorrelação que permaneça na série diferenciada. Claro, com um software como o Statgraphics, você poderia tentar algumas combinações diferentes de termos e ver o que funciona melhor. Mas existe uma maneira mais sistemática de fazer isso. Ao analisar as linhas de função de autocorrelação (ACF) e autocorrelação parcial (PACF) da série diferenciada, você pode identificar tentativamente os números de termos AR e MA que são necessários. Você já conhece o gráfico ACF: é apenas um gráfico de barras dos coeficientes de correlação entre séries temporais e atrasos de si. O plano PACF é um gráfico dos coeficientes de correlação parciais entre as séries e os atrasos de si. Em geral, a correlação quotpartial entre duas variáveis ​​é a quantidade de correlação entre elas que não é explicada por suas correlações mútuas com um conjunto especificado de outras variáveis. Por exemplo, se estamos regredindo uma variável Y em outras variáveis ​​X1, X2 e X3, a correlação parcial entre Y e X3 é a quantidade de correlação entre Y e X3 que não é explicada pelas suas correlações comuns com X1 e X2. Esta correlação parcial pode ser calculada como a raiz quadrada da redução de variância que é alcançada pela adição de X3 à regressão de Y em X1 e X2. Uma correlação automática parcial é a quantidade de correlação entre uma variável e um atraso de si que não é explicado por correlações em todas as notas de ordem inferior. A autocorrelação de uma série temporal Y no intervalo 1 é o coeficiente de correlação entre Y t e Y t - 1. O que é presumivelmente também a correlação entre Y t -1 e Y t -2. Mas se Y t está correlacionado com Y t -1. E Y t -1 está igualmente correlacionado com Y t -2. Então também devemos esperar encontrar correlação entre Y t e Y t-2. Na verdade, a quantidade de correlação que devemos esperar no intervalo 2 é precisamente o quadrado da correlação lag-1. Assim, a correlação no intervalo 1 quotpropagatesquot para lag 2 e presumivelmente para atrasos de ordem superior. A autocorrelação parcial no intervalo 2 é, portanto, a diferença entre a correlação real no intervalo 2 e a correlação esperada devido à propagação da correlação no intervalo 1. Aqui está a função de autocorrelação (ACF) da série UNITS, antes de qualquer diferenciação ser realizada: As autocorrelações são significativas para um grande número de atrasos, mas talvez as autocorrelações nos intervalos 2 e acima sejam meramente decorrentes da propagação da autocorrelação no intervalo 1. Isso é confirmado pelo argumento PACF: Observe que o gráfico PACF tem uma significância Pico apenas no intervalo 1, o que significa que todas as autocorrelações de ordem superior são efetivamente explicadas pela autocorrelação lag-1. As autocorrelações parciais em todos os atrasos podem ser calculadas ajustando uma sucessão de modelos autorregressivos com um número crescente de atrasos. Em particular, a autocorrelação parcial no intervalo k é igual ao coeficiente estimado de AR (k) em um modelo auto-regressivo com termos k, isto é, Um modelo de regressão múltipla em que Y é regredido em LAG (Y, 1), LAG (Y, 2), etc. até LAG (Y, k). Assim, por mera inspeção do PACF, você pode determinar quantos termos de AR você precisa usar para explicar o padrão de autocorrelação em uma série de tempo: se a autocorrelação parcial é significativa no intervalo k e não significativa em atrasos de ordem superior - ou seja. Se o PACF quotcuts offquot at lag k - então isso sugere que você deve tentar ajustar um modelo de ordem autorregressivo k O PACF da série UNITS fornece um exemplo extremo do fenômeno de corte: ele tem um pico muito grande no intervalo 1 E nenhum outro pico significativo, indicando que, na ausência de diferenciação, um modelo AR (1) deve ser usado. No entanto, o termo AR (1) neste modelo resultará ser equivalente a uma primeira diferença, porque o coeficiente estimado de AR (1) (que é a altura do pico PACF no intervalo 1) será quase exatamente igual a 1 . Agora, a equação de previsão para um modelo AR (1) para uma série Y sem ordens de diferenciação é: Se o coeficiente AR (1) 981 1 nesta equação for igual a 1, é equivalente a prever que a primeira diferença De Y é constante - ou seja É equivalente à equação do modelo de caminhada aleatória com crescimento: o PACF da série UNITS está nos dizendo que, se não diferenciarmos, então devemos caber um modelo AR (1) que se tornará equivalente a tomar Uma primeira diferença. Em outras palavras, está nos dizendo que UNITS realmente precisa de uma ordem de diferenciação para ser estacionada. Assinaturas AR e MA: se o PACF exibir um corte acentuado enquanto o ACF decai mais devagar (ou seja, tem picos significativos em atrasos maiores), dizemos que a série estacionada exibe uma assinatura quotAR, o que significa que o padrão de autocorrelação pode ser explicado com mais facilidade Adicionando termos AR do que adicionando termos MA. Provavelmente, você achará que uma assinatura AR é comumente associada à autocorrelação positiva no intervalo 1 - ou seja. Ele tende a surgir em séries que são ligeiramente inferiores. A razão para isso é que um termo AR pode atuar como uma diferença quotparcial na equação de previsão. Por exemplo, em um modelo AR (1), o termo AR age como uma primeira diferença se o coeficiente autorregressivo for igual a 1, não faz nada se o coeficiente autorregressivo for zero e ele atuará como uma diferença parcial se o coeficiente for entre 0 e 1. Então, se a série for ligeiramente inferior à diferença - ou seja Se o padrão não estacionário de autocorrelação positiva não tiver sido completamente eliminado, ele irá trocar por uma diferença parcial ao exibir uma assinatura AR. Portanto, temos a seguinte regra de ouro para determinar quando adicionar termos AR: Regra 6: Se o PACF da série diferenciada exibir um corte nítido e ou a autocorrelação lag-1 é positiva --i. e Se a série aparecer um pouco quotunderdifferencedquot - então considere adicionar um termo AR ao modelo. O atraso em que o PACF corta é o número indicado de termos AR. Em princípio, qualquer padrão de autocorrelação pode ser removido de uma série estacionada adicionando termos autorregressivos suficientes (atrasos da série estacionada) para a equação de previsão, e o PACF informa quantos são provavelmente necessários. No entanto, esta não é sempre a maneira mais simples de explicar um determinado padrão de autocorrelação: às vezes é mais eficiente adicionar os termos MA (atrasos dos erros de previsão). A função de autocorrelação (ACF) desempenha o mesmo papel para os termos MA que o PACF reproduz para os termos AR - ou seja, o ACF lhe diz quantos termos MA são susceptíveis de serem necessários para remover a autocorrelação restante da série diferenciada. Se a autocorrelação é significativa no intervalo k mas não em atrasos maiores - isto é. Se o ACF quotcuts offquot no lag k - isso indica que exatamente os termos de k MA devem ser usados ​​na equação de previsão. No último caso, dizemos que a série estacionada exibe uma assinatura quotMA, o que significa que o padrão de autocorrelação pode ser explicado mais facilmente adicionando termos MA que adicionando termos AR. Uma assinatura MA é comumente associada à autocorrelação negativa no intervalo 1 - isto é. Tende a surgir em séries que são ligeiramente diferenciadas. A razão para isso é que um termo de MA pode quettamente cancelar uma ordem de diferenciação na equação de previsão. Para ver isso, lembre-se de que um modelo ARIMA (0,1,1) sem constante é equivalente a um modelo Simple Sponente Exponencial. A equação de previsão para este modelo é onde o coeficiente MA (1) 952 1 corresponde à quantidade 1 - 945 no modelo SES. Se 952 1 for igual a 1, isso corresponde a um modelo SES com 945 0, que é apenas um modelo CONSTANT porque a previsão nunca é atualizada. Isto significa que quando 952 1 é igual a 1, é realmente cancelar a operação de diferenciação que normalmente permite que a previsão de SES se recupere na última observação. Por outro lado, se o coeficiente de média móvel for igual a 0, este modelo reduz-se a um modelo de caminhada aleatória - isto é. Ele deixa a operação de diferenciação sozinha. Então, se 952 1 for algo maior que 0, é como se cancelássemos parcialmente uma ordem de diferenciação. Se a série já estiver ligeiramente diferenciada - ou seja. Se a autocorrelação negativa for introduzida - então as cotas para uma diferença serão parcialmente canceladas ao exibir uma assinatura MA. (Muita onda de braços está acontecendo aqui Uma explicação mais rigorosa desse efeito é encontrada na Folha de Matemática de Modelos ARIMA). Daí a seguinte regra adicional: Regra 7: Se o ACF da série diferenciada exibir uma Corte nítido e ou a autocorrelação lag-1 é negativo --e Se a série aparecer um pouco quotoverdifferencedquot - então considere adicionar um termo MA ao modelo. O atraso em que o ACF corta é o número indicado de termos MA. Um modelo para a série UNITS - ARIMA (2,1,0): Anteriormente, determinamos que a série UNITS precisava (pelo menos) de uma modalidade de diferenciação não-sazonal para ser estacionada. Depois de tomar uma diferença não-sazonal - ou seja. Ajustando um modelo ARIMA (0,1,0) com constante - as parcelas ACF e PACF se parecem com isto: Observe que (a) a correlação no intervalo 1 é significativa e positiva, e (b) o PACF mostra um quotcutoffquot mais nítido do que O ACF. Em particular, o PACF tem apenas dois picos significativos, enquanto o ACF tem quatro. Assim, de acordo com a Regra 7 acima, a série diferenciada exibe uma assinatura AR (2). Se, portanto, definir a ordem do termo AR para 2 - ou seja. Ajustar um modelo ARIMA (2,1,0) - obtemos as seguintes parcelas ACF e PACF para os resíduos: a autocorrelação nos atrasos cruciais - ou seja, defasos 1 e 2 - foi eliminada e não existe um padrão discernível Em atrasos de ordem superior. A série de séries temporais dos resíduos mostra uma tendência ligeiramente preocupante para se afastar da média: no entanto, o relatório de resumo de análise mostra que o modelo, no entanto, funciona bastante bem no período de validação, ambos os coeficientes de AR são significativamente diferentes de zero e o padrão O desvio dos resíduos foi reduzido de 1.54371 para 1.4215 (quase 10) pela adição dos termos AR. Furthermore, there is no sign of a quotunit rootquot because the sum of the AR coefficients (0.2522540.195572) is not close to 1. (Unit roots are discussed on more detail below .) On the whole, this appears to be a good model. The (untransformed) forecasts for the model show a linear upward trend projected into the future: The trend in the long-term forecasts is due to fact that the model includes one nonseasonal difference and a constant term: this model is basically a random walk with growth fine-tuned by the addition of two autoregressive terms--i. e. two lags of the differenced series. The slope of the long-term forecasts (i. e. the average increase from one period to another) is equal to the mean term in the model summary (0.467566). The forecasting equation is: where 956 is the constant term in the model summary (0.258178), 981 1 is the AR(1) coefficient (0.25224) and 981 2 is the AR(2) coefficient (0.195572). Mean versus constant: In general, the quotmeanquot term in the output of an ARIMA model refers to the mean of the differenced series (i. e. the average trend if the order of differencing is equal to 1), whereas the quotconstantquot is the constant term that appears on the right-hand-side of the forecasting equation . The mean and constant terms are related by the equation: CONSTANT MEAN(1 minus the sum of the AR coefficients). In this case, we have 0.258178 0.467566(1 - 0.25224 - 0.195572) Alternative model for the UNITS series--ARIMA(0,2,1): Recall that when we began to analyze the UNITS series, we were not entirely sure of the correct order of differencing to use. One order of nonseasonal differencing yielded the lowest standard deviation (and a pattern of mild positive autocorrelation), while two orders of nonseasonal differencing yielded a more stationary-looking time series plot (but with rather strong negative autocorrelation). Here are both the ACF and PACF of the series with two nonseasonal differences: The single negative spike at lag 1 in the ACF is an MA(1) signature, according to Rule 8 above. Thus, if we were to use 2 nonseasonal differences, we would also want to include an MA(1) term, yielding an ARIMA(0,2,1) model. According to Rule 5, we would also want to suppress the constant term. Here, then, are the results of fitting an ARIMA(0,2,1) model without constant: Notice that the estimated white noise standard deviation (RMSE) is only very slightly higher for this model than the previous one (1.46301 here versus 1.45215 previously). The forecasting equation for this model is: where theta-1 is the MA(1) coefficient. Recall that this is similar to a Linear Exponential Smoothing model, with the MA(1) coefficient corresponding to the quantity 2(1-alpha) in the LES model. The MA(1) coefficient of 0.76 in this model suggests that an LES model with alpha in the vicinity of 0.72 would fit about equally well. Actually, when an LES model is fitted to the same data, the optimal value of alpha turns out to be around 0.61, which is not too far off. Here is a model comparison report that shows the results of fitting the ARIMA(2,1,0) model with constant, the ARIMA(0,2,1) model without constant, and the LES model: The three models perform nearly identically in the estimation period, and the ARIMA(2,1,0) model with constant appears slightly better than the other two in the validation period. On the basis of these statistical results alone, it would be hard to choose among the three models. However, if we plot the long-term forecasts made by the ARIMA(0,2,1) model without constant (which are essentially the same as those of the LES model), we see a significant difference from those of the earlier model: The forecasts have somewhat less of an upward trend than those of the earlier model--because the local trend near the end of the series is slightly less than the average trend over the whole series--but the confidence intervals widen much more rapidly. The model with two orders of differencing assumes that the trend in the series is time-varying, hence it considers the distant future to be much more uncertain than does the model with only one order of differencing. Which model should we choose That depends on the assumptions we are comfortable making with respect to the constancy of the trend in the data. The model with only one order of differencing assumes a constant average trend--it is essentially a fine-tuned random walk model with growth--and it therefore makes relatively conservative trend projections. It is also fairly optimistic about the accuracy with which it can forecast more than one period ahead. The model with two orders of differencing assumes a time-varying local trend--it is essentially a linear exponential smoothing model--and its trend projections are somewhat more more fickle. As a general rule in this kind of situation, I would recommend choosing the model with the lower order of differencing, other things being roughly equal. In practice, random-walk or simple-exponential-smoothing models often seem to work better than linear exponential smoothing models. Mixed models: In most cases, the best model turns out a model that uses either only AR terms or only MA terms, although in some cases a quotmixedquot model with both AR and MA terms may provide the best fit to the data. However, care must be exercised when fitting mixed models. It is possible for an AR term and an MA term to cancel each others effects . even though both may appear significant in the model (as judged by the t-statistics of their coefficients). Thus, for example, suppose that the quotcorrectquot model for a time series is an ARIMA(0,1,1) model, but instead you fit an ARIMA(1,1,2) model--i. e. you include one additional AR term and one additional MA term. Then the additional terms may end up appearing significant in the model, but internally they may be merely working against each other. The resulting parameter estimates may be ambiguous, and the parameter estimation process may take very many (e. g. more than 10) iterations to converge. Hence: Rule 8: It is possible for an AR term and an MA term to cancel each others effects, so if a mixed AR-MA model seems to fit the data, also try a model with one fewer AR term and one fewer MA term--particularly if the parameter estimates in the original model require more than 10 iterations to converge. For this reason, ARIMA models cannot be identified by quotbackward stepwisequot approach that includes both AR and MA terms. In other words, you cannot begin by including several terms of each kind and then throwing out the ones whose estimated coefficients are not significant. Instead, you normally follow a quotforward stepwisequot approach, adding terms of one kind or the other as indicated by the appearance of the ACF and PACF plots. Unit roots: If a series is grossly under - or overdifferenced--i. e. if a whole order of differencing needs to be added or cancelled, this is often signalled by a quotunit rootquot in the estimated AR or MA coefficients of the model. An AR(1) model is said to have a unit root if the estimated AR(1) coefficient is almost exactly equal to 1. (By quotexactly equal quot I really mean not significantly different from . in terms of the coefficients own standard error . ) When this happens, it means that the AR(1) term is precisely mimicking a first difference, in which case you should remove the AR(1) term and add an order of differencing instead. (This is exactly what would happen if you fitted an AR(1) model to the undifferenced UNITS series, as noted earlier.) In a higher-order AR model, a unit root exists in the AR part of the model if the sum of the AR coefficients is exactly equal to 1. In this case you should reduce the order of the AR term by 1 and add an order of differencing. A time series with a unit root in the AR coefficients is nonstationary --i. e. it needs a higher order of differencing. Rule 9: If there is a unit root in the AR part of the model--i. e. if the sum of the AR coefficients is almost exactly 1--you should reduce the number of AR terms by one and increase the order of differencing by one. Similarly, an MA(1) model is said to have a unit root if the estimated MA(1) coefficient is exactly equal to 1. When this happens, it means that the MA(1) term is exactly cancelling a first difference, in which case, you should remove the MA(1) term and also reduce the order of differencing by one. In a higher-order MA model, a unit root exists if the sum of the MA coefficients is exactly equal to 1. Rule 10: If there is a unit root in the MA part of the model--i. e. if the sum of the MA coefficients is almost exactly 1--you should reduce the number of MA terms by one and reduce the order of differencing by one. For example, if you fit a linear exponential smoothing model (an ARIMA(0,2,2) model) when a simple exponential smoothing model (an ARIMA(0,1,1) model) would have been sufficient, you may find that the sum of the two MA coefficients is very nearly equal to 1. By reducing the MA order and the order of differencing by one each, you obtain the more appropriate SES model. A forecasting model with a unit root in the estimated MA coefficients is said to be noninvertible . meaning that the residuals of the model cannot be considered as estimates of the quottruequot random noise that generated the time series. Another symptom of a unit root is that the forecasts of the model may quotblow upquot or otherwise behave bizarrely. If the time series plot of the longer-term forecasts of the model looks strange, you should check the estimated coefficients of your model for the presence of a unit root. Rule 11: If the long-term forecasts appear erratic or unstable, there may be a unit root in the AR or MA coefficients. None of these problems arose with the two models fitted here, because we were careful to start with plausible orders of differencing and appropriate numbers of AR and MA coefficients by studying the ACF and PACF models. More detailed discussions of unit roots and cancellation effects between AR and MA terms can be found in the Mathematical Structure of ARIMA Models handout.

Comments

Popular posts from this blog

Robot Forex 2014 Professional Live

Opções Trading Courses In India

Xfx Forex